当别人让你做一件你不能马上去做的事时,你会如何反映?如果你是人类的话,而且对方也是人类的话, 你只会说:“现在不行,我忙着在。闪开!”但是如果你是一个内核模块而且你被一个进程以同样的问题困扰, 你会有另外一个选择。你可以让该进程休眠直到你可以为它服务时。毕竟,这样的情况在内核中时时刻刻都在发生 (这就是系统让多进程在单CPU上同时运行的方法)。
这个内核模块就是一个这样的例子。文件(/proc/sleep))只可以在同一时刻被一个进程打开。
如果该文件已经被打开,内核模块将调用函数
wait_event_interruptible
[1]。该函数修改task的状态(task是一个内核中的结构体数据结构,
其中保存着对应进程的信息和该进程正在调用的系统调用,如果有的话)为
TASK_INTERRUPTIBLE意味着改进程将不会继续运行直到被唤醒,然后被添加到系统的进程等待队列
WaitQ
中,一个等待打开该文件的队列中。然后,该函数调用系统调度器去切换到另一个不同的
但有CPU运算请求的进程。
当一个进程处理完该文件并且关闭了该文件,module_close
就被调用执行了。
该函数唤醒所有在等待队列中的进程(还没有只唤醒特定进程的机制)。然后该函数返回,
那个刚刚关闭文件的进程得以继续运行。及时的,进程调度器会判定该进程执行已执行完毕,
将CPU转让给别的进程。被提供CPU使用权的那个进程就恰好从先前系统调用
module_interruptible_sleep_on
[2]后的地方开始继续执行。
它可以设置一个全局变量去通知别的进程该文件已被打开占用了。当别的请求该文件的进程获得CPU时间片时,
它们将检测该变量然后返回休眠。
更有趣的是,module_close
并不垄断唤醒等待中的请求文件的进程的权力。一个信号,像Ctrl+c (SIGINT也能够唤醒别的进程
[3]。
在这种情况下,我们想立即返回-EINTR 。
这对用户很重要,举个例子来说,用户可以在某个进程接受到文件前终止该进程。
还有一点值得注意。有些时候进程并不愿意休眠,它们要么立即执行它们想做的, 要么被告知任务无法进行。这样的进程在打开文件时会使用标志O_NONBLOCK。 在别的进程被阻塞时内核应该做出的响应是返回错误代码-EAGAIN,像在本例中对该文件的请求的进程。程序 cat_noblock,在本章的源代码目录下可以找到,就能够使用标志位 O_NONBLOCK打开文件。
Example 9-1. sleep.c
/* * sleep.c - create a /proc file, and if several processes try to open it at * the same time, put all but one to sleep */ #include <linux/kernel.h> /* We're doing kernel work */ #include <linux/module.h> /* Specifically, a module */ #include <linux/proc_fs.h> /* Necessary because we use proc fs */ #include <linux/sched.h> /* For putting processes to sleep and waking them up */ #include <asm/uaccess.h> /* for get_user and put_user */ /* * The module's file functions */ /* * Here we keep the last message received, to prove that we can process our * input */ #define MESSAGE_LENGTH 80 static char Message[MESSAGE_LENGTH]; static struct proc_dir_entry *Our_Proc_File; #define PROC_ENTRY_FILENAME "sleep" /* * Since we use the file operations struct, we can't use the special proc * output provisions - we have to use a standard read function, which is this * function */ static ssize_t module_output(struct file *file, /* see include/linux/fs.h */ char *buf, /* The buffer to put data to (in the user segment) */ size_t len, /* The length of the buffer */ loff_t * offset) { static int finished = 0; int i; char message[MESSAGE_LENGTH + 30]; /* * Return 0 to signify end of file - that we have nothing * more to say at this point. */ if (finished) { finished = 0; return 0; } /* * If you don't understand this by now, you're hopeless as a kernel * programmer. */ sprintf(message, "Last input:%s\n", Message); for (i = 0; i < len && message[i]; i++) put_user(message[i], buf + i); finished = 1; return i; /* Return the number of bytes "read" */ } /* * This function receives input from the user when the user writes to the /proc * file. */ static ssize_t module_input(struct file *file, /* The file itself */ const char *buf, /* The buffer with input */ size_t length, /* The buffer's length */ loff_t * offset) { /* offset to file - ignore */ int i; /* * Put the input into Message, where module_output will later be * able to use it */ for (i = 0; i < MESSAGE_LENGTH - 1 && i < length; i++) get_user(Message[i], buf + i); /* * we want a standard, zero terminated string */ Message[i] = '\0'; /* * We need to return the number of input characters used */ return i; } /* * 1 if the file is currently open by somebody */ int Already_Open = 0; /* * Queue of processes who want our file */ DECLARE_WAIT_QUEUE_HEAD(WaitQ); /* * Called when the /proc file is opened */ static int module_open(struct inode *inode, struct file *file) { /* * If the file's flags include O_NONBLOCK, it means the process doesn't * want to wait for the file. In this case, if the file is already * open, we should fail with -EAGAIN, meaning "you'll have to try * again", instead of blocking a process which would rather stay awake. */ if ((file->f_flags & O_NONBLOCK) && Already_Open) return -EAGAIN; /* * This is the correct place for try_module_get(THIS_MODULE) because * if a process is in the loop, which is within the kernel module, * the kernel module must not be removed. */ try_module_get(THIS_MODULE); /* * If the file is already open, wait until it isn't */ while (Already_Open) { int i, is_sig = 0; /* * This function puts the current process, including any system * calls, such as us, to sleep. Execution will be resumed right * after the function call, either because somebody called * wake_up(&WaitQ) (only module_close does that, when the file * is closed) or when a signal, such as Ctrl-C, is sent * to the process */ wait_event_interruptible(WaitQ, !Already_Open); /* * If we woke up because we got a signal we're not blocking, * return -EINTR (fail the system call). This allows processes * to be killed or stopped. */ /* * Emmanuel Papirakis: * * This is a little update to work with 2.2.*. Signals now are contained in * two words (64 bits) and are stored in a structure that contains an array of * two unsigned longs. We now have to make 2 checks in our if. * * Ori Pomerantz: * * Nobody promised me they'll never use more than 64 bits, or that this book * won't be used for a version of Linux with a word size of 16 bits. This code * would work in any case. */ for (i = 0; i < _NSIG_WORDS && !is_sig; i++) is_sig = current->pending.signal.sig[i] & ~current-> blocked.sig[i]; if (is_sig) { /* * It's important to put module_put(THIS_MODULE) here, * because for processes where the open is interrupted * there will never be a corresponding close. If we * don't decrement the usage count here, we will be * left with a positive usage count which we'll have no * way to bring down to zero, giving us an immortal * module, which can only be killed by rebooting * the machine. */ module_put(THIS_MODULE); return -EINTR; } } /* * If we got here, Already_Open must be zero */ /* * Open the file */ Already_Open = 1; return 0; /* Allow the access */ } /* * Called when the /proc file is closed */ int module_close(struct inode *inode, struct file *file) { /* * Set Already_Open to zero, so one of the processes in the WaitQ will * be able to set Already_Open back to one and to open the file. All * the other processes will be called when Already_Open is back to one, * so they'll go back to sleep. */ Already_Open = 0; /* * Wake up all the processes in WaitQ, so if anybody is waiting for the * file, they can have it. */ wake_up(&WaitQ); module_put(THIS_MODULE); return 0; /* success */ } /* * This function decides whether to allow an operation (return zero) or not * allow it (return a non-zero which indicates why it is not allowed). * * The operation can be one of the following values: * 0 - Execute (run the "file" - meaningless in our case) * 2 - Write (input to the kernel module) * 4 - Read (output from the kernel module) * * This is the real function that checks file permissions. The permissions * returned by ls -l are for reference only, and can be overridden here. */ static int module_permission(struct inode *inode, int op, struct nameidata *nd) { /* * We allow everybody to read from our module, but only root (uid 0) * may write to it */ if (op == 4 || (op == 2 && current->euid == 0)) return 0; /* * If it's anything else, access is denied */ return -EACCES; } /* * Structures to register as the /proc file, with pointers to all the relevant * functions. */ /* * File operations for our proc file. This is where we place pointers to all * the functions called when somebody tries to do something to our file. NULL * means we don't want to deal with something. */ static struct file_operations File_Ops_4_Our_Proc_File = { .read = module_output, /* "read" from the file */ .write = module_input, /* "write" to the file */ .open = module_open, /* called when the /proc file is opened */ .release = module_close, /* called when it's closed */ }; /* * Inode operations for our proc file. We need it so we'll have somewhere to * specify the file operations structure we want to use, and the function we * use for permissions. It's also possible to specify functions to be called * for anything else which could be done to an inode (although we don't bother, * we just put NULL). */ static struct inode_operations Inode_Ops_4_Our_Proc_File = { .permission = module_permission, /* check for permissions */ }; /* * Module initialization and cleanup */ /* * Initialize the module - register the proc file */ int init_module() { int rv = 0; Our_Proc_File = create_proc_entry(PROC_ENTRY_FILENAME, 0644, NULL); Our_Proc_File->owner = THIS_MODULE; Our_Proc_File->proc_iops = &Inode_Ops_4_Our_Proc_File; Our_Proc_File->proc_fops = &File_Ops_4_Our_Proc_File; Our_Proc_File->mode = S_IFREG | S_IRUGO | S_IWUSR; Our_Proc_File->uid = 0; Our_Proc_File->gid = 0; Our_Proc_File->size = 80; if (Our_Proc_File == NULL) { rv = -ENOMEM; remove_proc_entry(PROC_ENTRY_FILENAME, &proc_root); printk(KERN_INFO "Error: Could not initialize /proc/test\n"); } return rv; } /* * Cleanup - unregister our file from /proc. This could get dangerous if * there are still processes waiting in WaitQ, because they are inside our * open function, which will get unloaded. I'll explain how to avoid removal * of a kernel module in such a case in chapter 10. */ void cleanup_module() { remove_proc_entry(PROC_ENTRY_FILENAME, &proc_root); }
[1] | 最方便的保持某个文件被打开的方法是使用命令 tail -f打开该文件。 |
[2] | 这就意味着该进程仍然在内核态中,
该进程已经调用了 |
[3] | 这是因为我们使用的是 |