当别人让你做一件你不能马上去做的事时,你会如何反映?如果你是人类的话,而且对方也是人类的话,你只会说:“现在不行,我忙着在。闪开!”但是如果你是一个内核模块而且你被一个进程以同样的问题困扰,你会有另外一个选择。你可以让该进程休眠直到你可以为它服务时。毕竟,这样的情况在内核中时时刻刻都在发生(这就是系统让多进程在单CPU上同时运行的方法)。
这个内核模块就是一个这样的例子。文件(名叫 /proc/sleep )只可以在同一时刻被一个进程打开。如果该文件已经被打开,内核模块将调用函数 module_interruptible_sleep_on[1]。该函数修改task的状态(task是一个内核中的结构体数据结构,其中保存着对应进程的信息和该进程正在调用的系统调用,如果有的话)为TASK_INTERRUPTIBLE,意味着改进程将不会继续运行直到被唤醒,然后被添加到系统的进程等待队列中,一个等待打开该文件的队列中。然后,该函数调用系统调度器去切换到另一个不同的但有CPU运算请求的进程。
当一个进程处理完该文件并且关闭了该文件, module_close 酒杯调用执行了。该函数唤醒所有在等待队列中的进程(还没有只唤醒特定进程的机制)。然后该函数返回,那个刚刚关闭文件的进程得以继续运行。及时的,进程调度器会判定该进程执行已执行完毕,将CPU转让给别的进程。被提供CPU使用权的那个进程就恰好从先前系统调用 module_interruptible_sleep_on[2] 后的地方开始继续执行。它可以设置一个全局变量去通知别的进程该文件已被打开占用了。当别的请求该文件的进程获得CPU时间片时,它们将检测该变量然后返回休眠。
更有趣的是, module_close 并不垄断唤醒等待中的请求文件的进程的权力。一个信号,像 Ctrl+c (SIGINT) 也能够唤醒别的进程[3] 。在这种情况下,我们想立即返回 -EINTR 。这对用户很重要,举个例子来说,用户可以在某个进程接受到文件前终止该进程。
还有一点值得注意。有些时候进程并不愿意休眠,它们要么立即执行它们想做的,要么被告知任务无法进行。这样的进程在打开文件时会使用标志 O_NONBLOCK 。在别的进程被阻塞时内核应该做出的响应是返回错误代码 -EAGAIN ,像在本例中对该文件的请求的进程。程序 cat_noblock,在本章的源代码目录下可以找到,就能够使用标志位 O_NONBLOCK 打开文件。
Example 9-1. sleep.c
/* sleep.c - create a /proc file, and if several processes try to open it at * the same time, put all but one to sleep */ #include <linux/kernel.h> /* We're doing kernel work */ #include <linux/module.h> /* Specifically, a module */ /* Deal with CONFIG_MODVERSIONS */ #if CONFIG_MODVERSIONS==1 #define MODVERSIONS #include <linux/modversions.h> #endif /* Necessary because we use proc fs */ #include <linux/proc_fs.h> /* For putting processes to sleep and waking them up */ #include <linux/sched.h> #include <linux/wrapper.h> /* In 2.2.3 /usr/include/linux/version.h includes a macro for this, but 2.0.35 * doesn't - so I add it here if necessary. */ #ifndef KERNEL_VERSION #define KERNEL_VERSION(a,b,c) ((a)*65536+(b)*256+(c)) #endif #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0) #include <asm/uaccess.h> /* for get_user and put_user */ #endif /* The module's file functions */ /* Here we keep the last message received, to prove that we can process our * input */ #define MESSAGE_LENGTH 80 static char Message[MESSAGE_LENGTH]; /* Since we use the file operations struct, we can't use the special proc * output provisions - we have to use a standard read function, which is this * function */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0) static ssize_t module_output ( struct file *file, /* The file read */ char *buf, /* The buffer to put data to (in the user segment) */ size_t len, /* The length of the buffer */ loff_t *offset) /* Offset in the file - ignore */ #else static int module_output ( struct inode *inode, /* The inode read */ struct file *file, /* The file read */ char *buf, /* The buffer to put data to (in the user segment) */ int len) /* The length of the buffer */ #endif { static int finished = 0; int i; char message[MESSAGE_LENGTH+30]; /* Return 0 to signify end of file - that we have nothing more to say at this * point. */ if (finished) { finished = 0; return 0; } /* If you don't understand this by now, you're hopeless as a kernel * programmer. */ sprintf(message, "Last input:%s\n", Message); for (i = 0; i < len && message[i]; i++) put_user(message[i], buf+i); finished = 1; return i; /* Return the number of bytes "read" */ } /* This function receives input from the user when the user writes to the /proc * file. */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0) static ssize_t module_input ( struct file *file, /* The file itself */ const char *buf, /* The buffer with input */ size_t length, /* The buffer's length */ loff_t *offset) /* offset to file - ignore */ #else static int module_input ( struct inode *inode, /* The file's inode */ struct file *file, /* The file itself */ const char *buf, /* The buffer with the input */ int length) /* The buffer's length */ #endif { int i; /* Put the input into Message, where module_output will later be able to use * it */ for(i = 0; i < MESSAGE_LENGTH-1 && i < length; i++) #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0) get_user(Message[i], buf+i); #else Message[i] = get_user(buf+i); #endif /* we want a standard, zero terminated string */ Message[i] = '\0'; /* We need to return the number of input characters used */ return i; } /* 1 if the file is currently open by somebody */ int Already_Open = 0; /* Queue of processes who want our file */ static struct wait_queue *WaitQ = NULL; /* Called when the /proc file is opened */ static int module_open(struct inode *inode, struct file *file) { /* If the file's flags include O_NONBLOCK, it means the process doesn't want * to wait for the file. In this case, if the file is already open, we * should fail with -EAGAIN, meaning "you'll have to try again", instead of * blocking a process which would rather stay awake. */ if ((file->f_flags & O_NONBLOCK) && Already_Open) return -EAGAIN; /* This is the correct place for MOD_INC_USE_COUNT because if a process is * in the loop, which is within the kernel module, the kernel module must * not be removed. */ MOD_INC_USE_COUNT; /* If the file is already open, wait until it isn't */ while (Already_Open) { #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0) int i, is_sig = 0; #endif /* This function puts the current process, including any system calls, * such as us, to sleep. Execution will be resumed right after the * function call, either because somebody called wake_up(&WaitQ) (only * module_close does that, when the file is closed) or when a signal, * such as Ctrl-C, is sent to the process */ module_interruptible_sleep_on(&WaitQ); /* If we woke up because we got a signal we're not blocking, return * -EINTR (fail the system call). This allows processes to be killed or * stopped. */ /* * Emmanuel Papirakis: * * This is a little update to work with 2.2.*. Signals now are contained in * two words (64 bits) and are stored in a structure that contains an array of * two unsigned longs. We now have to make 2 checks in our if. * * Ori Pomerantz: * * Nobody promised me they'll never use more than 64 bits, or that this book * won't be used for a version of Linux with a word size of 16 bits. This code * would work in any case. */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0) for (i = 0; i < _NSIG_WORDS && !is_sig; i++) is_sig = current->signal.sig[i] & ~current->blocked.sig[i]; if (is_sig) { #else if (current->signal & ~current->blocked) { #endif /* It's important to put MOD_DEC_USE_COUNT here, because for processes * where the open is interrupted there will never be a corresponding * close. If we don't decrement the usage count here, we will be left * with a positive usage count which we'll have no way to bring down * to zero, giving us an immortal module, which can only be killed by * rebooting the machine. */ MOD_DEC_USE_COUNT; return -EINTR; } } /* If we got here, Already_Open must be zero */ /* Open the file */ Already_Open = 1; return 0; /* Allow the access */ } /* Called when the /proc file is closed */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0) int module_close(struct inode *inode, struct file *file) #else void module_close(struct inode *inode, struct file *file) #endif { /* Set Already_Open to zero, so one of the processes in the WaitQ will be * able to set Already_Open back to one and to open the file. All the other * processes will be called when Already_Open is back to one, so they'll go * back to sleep. */ Already_Open = 0; /* Wake up all the processes in WaitQ, so if anybody is waiting for the * file, they can have it. */ module_wake_up(&WaitQ); MOD_DEC_USE_COUNT; #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0) return 0; /* success */ #endif } /* This function decides whether to allow an operation (return zero) or not * allow it (return a non-zero which indicates why it is not allowed). * * The operation can be one of the following values: * 0 - Execute (run the "file" - meaningless in our case) * 2 - Write (input to the kernel module) * 4 - Read (output from the kernel module) * * This is the real function that checks file permissions. The permissions * returned by ls -l are for referece only, and can be overridden here. */ static int module_permission(struct inode *inode, int op) { /* We allow everybody to read from our module, but only root (uid 0) may * write to it */ if (op == 4 || (op == 2 && current->euid == 0)) return 0; /* If it's anything else, access is denied */ return -EACCES; } /* Structures to register as the /proc file, with pointers to all the relevant * functions. */ /* File operations for our proc file. This is where we place pointers to all * the functions called when somebody tries to do something to our file. NULL * means we don't want to deal with something. */ static struct file_operations File_Ops_4_Our_Proc_File = { NULL, /* lseek */ module_output, /* "read" from the file */ module_input, /* "write" to the file */ NULL, /* readdir */ NULL, /* select */ NULL, /* ioctl */ NULL, /* mmap */ module_open, /* called when the /proc file is opened */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0) NULL, /* flush */ #endif module_close}; /* called when it's classed */ /* Inode operations for our proc file. We need it so we'll have somewhere to * specify the file operations structure we want to use, and the function we * use for permissions. It's also possible to specify functions to be called * for anything else which could be done to an inode (although we don't bother, * we just put NULL). */ static struct inode_operations Inode_Ops_4_Our_Proc_File = { &File_Ops_4_Our_Proc_File, NULL, /* create */ NULL, /* lookup */ NULL, /* link */ NULL, /* unlink */ NULL, /* symlink */ NULL, /* mkdir */ NULL, /* rmdir */ NULL, /* mknod */ NULL, /* rename */ NULL, /* readlink */ NULL, /* follow_link */ NULL, /* readpage */ NULL, /* writepage */ NULL, /* bmap */ NULL, /* truncate */ module_permission}; /* check for permissions */ /* Directory entry */ static struct proc_dir_entry Our_Proc_File = { 0, /* Inode number - ignore, it will be filled by * proc_register[_dynamic] */ 5, /* Length of the file name */ "sleep", /* The file name */ /* File mode - this is a regular file which can be read by its owner, its * group, and everybody else. Also, its owner can write to it. * * Actually, this field is just for reference, it's module_permission that * does the actual check. It could use this field, but in our * implementation it doesn't, for simplicity. */ S_IFREG | S_IRUGO | S_IWUSR, 1, /* Number of links (directories where the file is referenced) */ 0, 0, /* The uid and gid for the file - we give it to root */ 80, /* The size of the file reported by ls. */ /* A pointer to the inode structure for the file, if we need it. In our * case we do, because we need a write function. */ &Inode_Ops_4_Our_Proc_File, /* The read function for the file. Irrelevant, because we put it in the * inode structure above */ NULL}; /* Module initialization and cleanup */ /* Initialize the module - register the proc file */ int init_module() { /* Success if proc_register_dynamic is a success, failure otherwise */ #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,2,0) return proc_register(&proc_root, &Our_Proc_File); #else return proc_register_dynamic(&proc_root, &Our_Proc_File); #endif /* proc_root is the root directory for the proc fs (/proc). This is where * we want our file to be located. */ } /* Cleanup - unregister our file from /proc. This could get dangerous if * there are still processes waiting in WaitQ, because they are inside our * open function, which will get unloaded. I'll explain how to avoid removal * of a kernel module in such a case in chapter 10. */ void cleanup_module() { proc_unregister(&proc_root, Our_Proc_File.low_ino); } |
[1] | 最方便的保持某个文件被打开的方法是使用命令 tail -f 打开该文件。 |
[2] | 这就意味着该进程仍然在内核态中——该进程已经调用了 open 的系统调用,但系统调用却没有返回。在这段时间内该进程将不会得知别人正在使用CPU。 |
[3] | 这是因为我们使用的是 module_interruptible_sleep_on. 我们也可以使用 module_sleep_on ,但这样会导致一些十分愤怒的用户,因为他们的 Ctrl+c 将不起任何作用。 |