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1 No degeneracy, no zero eigenvalues

Consider the Hermitian matrix:

M̂ =





1 0 0

0 1
√

2

0
√

2 0





1.1 Trace and Determinant

Det[M̂ ] = −2 Tr[M̂ ] = 2

1.2 Eigenvalues and Eigenvectors

The eigenvalue equation is Det[M̂ − λÎ ] = −λ3 + 2λ2 + λ − 2, which yield the eigenvalues −1, 1, 2.
Based on these eigenvalues, we’d expect that M diagonalized is:

M̂D =





−1 0 0
0 1 0
0 0 2





The eigenvector equation is:

M̂ |u〉 = λ |u〉 =⇒





1 0 0

0 1
√

2

0
√

2 0









a

b

c



 =





a

b +
√

2c√
2b



 = λ





a

b

c





There is nothing surprising or tricky about finding the eigenvectors, so we’ll just state them:

|λ−1〉 =
1√
3





0
1

−
√

2



 |λ1〉 =





1
0
0



 |λ2〉 =
1√
3





0√
2

1





It’s easily seen that the eigenvalues are non-degenerate and the eigenvectors are orthogonal.
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1.3 Spectral Decomposition of M̂

Let’s verify the spectral decomposition of M :

M̂ =

3
∑

i=0

λi |λi〉 〈λi|

= λ1 |λ1〉 〈λ1| + λ2 |λ2〉 〈λ2| + λ3 |λ3〉 〈λ3|

= −1

3





0
1

−
√

2





(

0 1 −
√

2
)

+ 1





1
0
0





(

1 0 0
)

+ −2

3





0√
2

1





(

0
√

2 1
)

=
1√
2





1 0 0

0 1
√

2

0
√

2 0





1.4 Diagonalization of M̂

Now we’ll actually diagonalize eq(1) rather than just writing it down using our knowledge of the
eigenvalues. This amounts to expressing eq(1) in the eigenbasis formed by its eigenvalues. Form
the transformation matrix with the eigenvectors of M as column vectors:

ÛD =
(

|λ−1〉 |λ1〉 |λ2〉
)

=









0 1 0
1√
3

0
√

2

3

−
√

2

3
0 1√

3









=
1√
3





0
√

3 0

1 0
√

2

−
√

2 0 1
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2 No Degeneracy, With Zero Eigenvalue

Consider the matrix:

M̂ =
1√
2





0 1 0
1 0 1
0 1 0



 (1)

2.1 Trace and Determinant of M̂

It’s easy seen that:

Det[M̂ ] = 0 Tr[M̂ ] = 0

2.2 Eigenvalues and Eigenvectors of M̂

The eigenvalue equation is Det[M̂ −λI] = λ(1−λ2) = 0 which yields eigenvalues of 1, 0,−1. Based
on these eigenvalues, we’d expect M̂ diagonalized is (we’ll verify this shortly):

M̂D =
1√
2





1 0 0
0 0 0
0 0 −1



 (2)

The eigenvector equation is:

M̂ |u〉 = λ |u〉 =⇒ 1√
2





0 1 0
1 0 1
0 1 0









a

b

c



 =
1√
2





b

a + c

b



 = λ





a

b

c





Getting the eigenvectors for λ1 and λ−1 is straightforward:

λ1 :
b√
2

= a = c and
a + c√

2
= b =⇒ |λ1〉 =

1

2





1√
2

1





λ−1 :
b√
2

= −a = −c and
a + c√

2
= −b =⇒ |λ−1〉 =

1

2





1

−
√

2
1





The zero eigenvalue is a problem, since it gives an eigenvector with components of zero. What we
need to do is find a vector that’s orthogonal to both |λ1〉 and |λ−1〉. This is guaranteed to be an
eigenvalue since we’re working a 3 dimensional vector space:
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〈λ0|λ1〉 =
(

a b c
)





1√
2

1



 = a +
√

2b + c = 0

〈λ0|λ−1〉 =
(

a b c
)





1

−
√

2
1



 = a + −
√

2b + c = 0

Adding these two equations gives the eigenvector of eigenvalue 0:

|λ0〉 =
1√
2





1
0
−1





So now we have all the eigenvalues and eigenvectors of eq(1):

|λ1〉 =
1

2





1√
2

1



 |λ0〉 =
1√
2





1
0
−1



 |λ−1〉 =
1

2





1

−
√

2
1





2.3 Spectral Decomposition of M̂

Let’s verify the spectral decomposition of M̂ :

M̂ =

3
∑

i=0

λi |λi〉 〈λi|

= λ1 |λ1〉 〈λ1| + λ2 |λ2〉 〈λ2| + λ3 |λ3〉 〈λ3|

=
1

4





1√
2

1





(

1
√

2 1
)

+ 0 + −1

4





1

−
√

2
1





(

1 −
√

2 1
)

=
1

4





0 2
√

2 0

2
√

2 2
√

2

0 2
√

2 0



 − 1

4





0 −2
√

2 0

−2
√

2 2 −
√

2

0 −2
√

2 0





=
1√
2





0 1 0
1 0 1
0 1 0
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2.4 Diagonalization of M̂

Now we’ll actually diagonalize eq(1) rather than just writing it down using our knowledge of the
eigenvalues. This amounts to expressing eq(1) in the eigenbasis formed by its eigenvalues. Form
the transformation matrix with the eigenvectors of M̂ as column vectors:

M̂D =
(

|λ1〉 |λ0〉 |λ−1〉
)

=







1

2

1√
2

1

2

1√
2

0 − 1√
2

1

2
− 1√

2

1

2






=

1

2





1
√

2 1√
2 0 −

√
2

1 −
√

2 1



 (3)

And calculating the similarity transformation based on eq(3) confirms the diagonalized version of
M̂ that we wrote down earlier:

M̂D = U
†
D

MUD

=
1

2





1
√

2 1√
2 0 −

√
2

1 −
√

2 1





1√
2





0 1 0
1 0 1
0 1 0





1

2





1
√

2 1√
2 0 −

√
2

1 −
√

2 1





=





1 0 0
0 0 0
0 0 −1





verifyng the eigenvalues we found as well as M̂D that we wrote down eq(2) based on them. In
addition, it’s easily seen that the determinant and trace of M̂D are both 0, as they were for M̂ .

2.5 Trace and Determinant of M̂D

It’s easily seen that:

Det[M̂ ]D = 0 Tr[M̂ ] = 0

As expected, the trace and determinant of M̂ and M̂D are the same.

2.6 Eigenvalues and Eigenvectors of M̂D

The eigenvalue equation for M̂D is Det[M̂D − λI] = (1 − λ)λ(1 + λ2) = 0 which yields eigenvalues
of 1, 0,−1. As expected, the eigenvalues of M̂ and M̂D are the same.

The eigenvector equation is:
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1 0 0
0 0 0
0 0 −1









a

b

c



 =





a

b

c





The first and last eigenvectors are easily seen to be:

|λ1〉 :





1
0
0



 and |λ−1〉 :





0
0
1





The 2nd eigenvector is trivial too. We’re working in a 3 dimensional vector space, so any vector
which is orthogonal to both |λ1〉 and |λ−1〉 will work. There is an obvious choice here:

|λ1〉 :





1
0
0



 |λ0〉 :





0
1
0



 |λ−1〉 :





0
0
1





2.7 Spectral Decomposition of M̂D

This one is so easy that you can picture it in your head!

M̂D =

3
∑

i=0

λi |λi〉 〈λi|

= λ1 |λ1〉 〈λ1| + λ2 |λ2〉 〈λ2| + λ3 |λ3〉 〈λ3|

=





1
0
0





(

1 0 0
)

+ 0 −





0
0
1





(

0 0 1
)

=





1 0 0
0 0 0
0 0 −1
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